Bridging Reasoning and Action: The Synergy of Large Concept Models (LCMs) and Large Action Models (LAMs) in Agentic Systems

Bridging Reasoning and Action: The Synergy of Large Concept Models (LCMs) and Large Action Models (LAMs) in Agentic Systems

The advent of advanced AI models has led to innovations in how machines process information, interact with humans, and execute tasks in real-world settings. Two emerging pioneering approaches are large concept models (LCMs) and large action models (LAMs). While both extend the foundational capabilities of large language models (LLMs), their objectives and applications diverge. LCMs…

Read More
This AI Paper from Tel Aviv University Introduces GASLITE: A Gradient-Based Method to Expose Vulnerabilities in Dense Embedding-Based Text Retrieval Systems

This AI Paper from Tel Aviv University Introduces GASLITE: A Gradient-Based Method to Expose Vulnerabilities in Dense Embedding-Based Text Retrieval Systems

Dense embedding-based text retrieval has become the cornerstone for ranking text passages in response to queries. The systems use deep learning models for embedding text into vector spaces that enable semantic similarity measurements. This method has been adopted widely in applications such as search engines and retrieval-augmented generation (RAG), where retrieving accurate and contextually relevant…

Read More