Like human brains, large language models reason about diverse data in a general way

Like human brains, large language models reason about diverse data in a general way

While early language models could only process text, contemporary large language models now perform highly diverse tasks on different types of data. For instance, LLMs can understand many languages, generate computer code, solve math problems, or answer questions about images and audio.    MIT researchers probed the inner workings of LLMs to better understand how they…

Read More
Reinforcement Learning Meets Chain-of-Thought: Transforming LLMs into Autonomous Reasoning Agents

Reinforcement Learning Meets Chain-of-Thought: Transforming LLMs into Autonomous Reasoning Agents

Large Language Models (LLMs) have significantly advanced natural language processing (NLP), excelling at text generation, translation, and summarization tasks. However, their ability to engage in logical reasoning remains a challenge. Traditional LLMs, designed to predict the next word, rely on statistical pattern recognition rather than structured reasoning. This limits their ability to solve complex problems…

Read More
Ghostbuster: Detecting Text Ghostwritten by Large Language Models

Ghostbuster: Detecting Text Ghostwritten by Large Language Models

The structure of Ghostbuster, our new state-of-the-art method for detecting AI-generated text. Large language models like ChatGPT write impressively well—so well, in fact, that they’ve become a problem. Students have begun using these models to ghostwrite assignments, leading some schools to ban ChatGPT. In addition, these models are also prone to producing text with factual…

Read More