
Jacob Andreas

How to build AI scaling laws for efficient LLM training and budget maximization
When researchers are building large language models (LLMs), they aim to maximize performance under a particular computational and financial budget. Since training a model can amount to millions of dollars, developers need to be judicious with cost-impacting decisions about, for instance, the model architecture, optimizers, and training datasets before committing to a model. To anticipate…

The unique, mathematical shortcuts language models use to predict dynamic scenarios
Let’s say you’re reading a story, or playing a game of chess. You may not have noticed, but each step of the way, your mind kept track of how the situation (or “state of the world”) was changing. You can imagine this as a sort of sequence of events list, which we use to update…