
Imitation

Meta AI’s ‘Early Experience’ Trains Language Agents without Rewards—and Outperforms Imitation Learning
How would your agent stack change if a policy could train purely from its own outcome-grounded rollouts—no rewards, no demos—yet beat imitation learning across eight benchmarks? Meta Superintelligence Labs propose ‘Early Experience‘, a reward-free training approach that improves policy learning in language agents without large human demonstration sets and without reinforcement learning (RL) in the…