The Latest Gemini 2.5 Flash-Lite Preview is Now the Fastest Proprietary Model (External Tests) and 50% Fewer Output Tokens

The Latest Gemini 2.5 Flash-Lite Preview is Now the Fastest Proprietary Model (External Tests) and 50% Fewer Output Tokens

Google released an updated version of Gemini 2.5 Flash and Gemini 2.5 Flash-Lite preview models across AI Studio and Vertex AI, plus rolling aliases—gemini-flash-latest and gemini-flash-lite-latest—that always point to the newest preview in each family. For production stability, Google advises pinning fixed strings (gemini-2.5-flash, gemini-2.5-flash-lite). Google will give a two-week…

Read More
How to Build an End-to-End Data Science Workflow with Machine Learning, Interpretability, and Gemini AI Assistance?

How to Build an End-to-End Data Science Workflow with Machine Learning, Interpretability, and Gemini AI Assistance?

In this tutorial, we walk through an advanced end-to-end data science workflow where we combine traditional machine learning with the power of Gemini. We begin by preparing and modeling the diabetes dataset, then we dive into evaluation, feature importance, and partial dependence. Along the way, we bring in Gemini as our AI data scientist to…

Read More
Building Advanced MCP (Model Context Protocol) Agents with Multi-Agent Coordination, Context Awareness, and Gemini Integration

Building Advanced MCP (Model Context Protocol) Agents with Multi-Agent Coordination, Context Awareness, and Gemini Integration

class MCPAgent: “””Advanced MCP Agent with evolved capabilities – Jupyter Compatible””” def __init__(self, agent_id: str, role: AgentRole, api_key: str = None): self.agent_id = agent_id self.role = role self.api_key = api_key self.memory = [] self.context = AgentContext( agent_id=agent_id, role=role, capabilities=self._init_capabilities(), memory=[], tools=self._init_tools() ) self.model = None if GEMINI_AVAILABLE and api_key: try: genai.configure(api_key=api_key) self.model = genai.GenerativeModel(‘gemini-pro’) print(f”✅…

Read More
A Coding Implementation of an Advanced Tool-Using AI Agent with Semantic Kernel and Gemini

A Coding Implementation of an Advanced Tool-Using AI Agent with Semantic Kernel and Gemini

In this tutorial, we build an advanced AI agent using Semantic Kernel combined with Google’s Gemini free model, and we run it seamlessly on Google Colab. We start by wiring Semantic Kernel plugins as tools, like web search, math evaluation, file I/O, and note-taking, and then let Gemini orchestrate them through structured JSON outputs. We…

Read More
Building a Multi-Agent Conversational AI Framework with Microsoft AutoGen and Gemini API

Building a Multi-Agent Conversational AI Framework with Microsoft AutoGen and Gemini API

class GeminiAutoGenFramework: “”” Complete AutoGen framework using free Gemini API Supports multi-agent conversations, code execution, and retrieval “”” def __init__(self, gemini_api_key: str): “””Initialize with Gemini API key””” self.gemini_api_key = gemini_api_key self.setup_gemini_config() self.agents: Dict[str, autogen.Agent] = {} self.group_chats: Dict[str, GroupChat] = {} def setup_gemini_config(self): “””Configure Gemini for AutoGen””” os.environ[“GOOGLE_API_KEY”] = self.gemini_api_key self.llm_config = { “config_list”: […

Read More
Vilken AI-modell passar dig bäst? ChatGPT, Claude, Gemini, Perplexity – AI nyheter

Vilken AI-modell passar dig bäst? ChatGPT, Claude, Gemini, Perplexity – AI nyheter

En guide för dig som är nybörjare och vill testa AI-modeller utöver ChatGPT, Som nybörjare kanske du bara känner till ChatGPT, men det finns många andra kraftfulla AI-modeller att utforska – som Claude, Gemini, Grok och Perplexity AI. Varje AI-modell har unika styrkor anpassade för specifika uppgifter. Vissa är bäst för konversationer, andra excellerar inom…

Read More