This AI Paper Explores Long Chain-of-Thought Reasoning: Enhancing Large Language Models with Reinforcement Learning and Supervised Fine-Tuning

This AI Paper Explores Long Chain-of-Thought Reasoning: Enhancing Large Language Models with Reinforcement Learning and Supervised Fine-Tuning

Large language models (LLMs) have demonstrated proficiency in solving complex problems across mathematics, scientific research, and software engineering. Chain-of-thought (CoT) prompting is pivotal in guiding models through intermediate reasoning steps before reaching conclusions. Reinforcement learning (RL) is another essential component that enables structured reasoning, allowing models to recognize and correct errors efficiently. Despite these advancements,…

Read More
Process Reinforcement through Implicit Rewards (PRIME): A Scalable Machine Learning Framework for Enhancing Reasoning Capabilities

Process Reinforcement through Implicit Rewards (PRIME): A Scalable Machine Learning Framework for Enhancing Reasoning Capabilities

Reinforcement learning (RL) for large language models (LLMs) has traditionally relied on outcome-based rewards, which provide feedback only on the final output. This sparsity of reward makes it challenging to train models that need multi-step reasoning, like those employed in mathematical problem-solving and programming. Additionally, credit assignment becomes ambiguous, as the model does not get…

Read More