Meet SmallThinker: A Family of Efficient Large Language Models LLMs Natively Trained for Local Deployment

Meet SmallThinker: A Family of Efficient Large Language Models LLMs Natively Trained for Local Deployment

The generative AI landscape is dominated by massive language models, often designed for the vast capacities of cloud data centers. These models, while powerful, make it difficult or impossible for everyday users to deploy advanced AI privately and efficiently on local devices like laptops, smartphones, or embedded systems. Instead of compressing cloud-scale models for the…

Read More
Bringing meaning into technology deployment

Bringing meaning into technology deployment

In 15 TED Talk-style presentations, MIT faculty recently discussed their pioneering research that incorporates social, ethical, and technical considerations and expertise, each supported by seed grants established by the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing. The call for proposals last summer was met with…

Read More
Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

Training Diffusion Models with Reinforcement Learning We deployed 100 reinforcement learning (RL)-controlled cars into rush-hour highway traffic to smooth congestion and reduce fuel consumption for everyone. Our goal is to tackle “stop-and-go” waves, those frustrating slowdowns and speedups that usually have no clear cause but lead to congestion and significant energy waste. To train efficient…

Read More