
Context

Model Context Protocol (MCP) FAQs: Everything You Need to Know in 2025
The Model Context Protocol (MCP) has rapidly become a foundational standard for connecting large language models (LLMs) and other AI applications with the systems and data they need to be genuinely useful. In 2025, MCP is widely adopted, reshaping how enterprises, developers, and end-users experience AI-powered automation, knowledge retrieval, and real-time decision making. Below is…

Model Context Protocol (MCP) for Enterprises: Secure Integration with AWS, Azure, and Google Cloud- 2025 Update
The Model Context Protocol (MCP), open-sourced by Anthropic in November 2024, has rapidly become the cross-cloud standard for connecting AI agents to tools, services, and data across the enterprise landscape. Since its release, major cloud vendors and leading AI providers have shipped first-party MCP integrations, and independent platforms are quickly expanding the…

Context Rot: How Increasing Input Tokens Impacts LLM Performance
Recent developments in LLMs show a trend toward longer context windows, with the input token count of the latest models reaching the millions. Because these models achieve near-perfect scores on widely adopted benchmarks like Needle in a Haystack (NIAH) [1], it’s often assumed that their performance is uniform across long-context tasks. However, NIAH is fundamentally…

Moonshot AI Releases Kimi K2: A Trillion-Parameter MoE Model Focused on Long Context, Code, Reasoning, and Agentic Behavior
Kimi K2, launched by Moonshot AI in July 2025, is a purpose-built, open-source Mixture-of-Experts (MoE) model—1 trillion total parameters, with 32 billion active parameters per token. It’s trained using the custom MuonClip optimizer on 15.5 trillion tokens, achieving stable training at this unprecedented scale without the typical instabilities seen in ultra-large models. Unlike traditional chatbots, K2 is architected…

LLMs Can Now Reason in Parallel: UC Berkeley and UCSF Researchers Introduce Adaptive Parallel Reasoning to Scale Inference Efficiently Without Exceeding Context Windows
Large language models (LLMs) have made significant strides in reasoning capabilities, exemplified by breakthrough systems like OpenAI o1 and DeepSeekR1, which utilize test-time compute for search and reinforcement learning to optimize performance. Despite this progress, current methodologies face critical challenges that impede their effectiveness. Serialized chain-of-thought approaches generate excessively long output sequences, increasing latency and…

A Step-by-Step Coding Guide to Defining Custom Model Context Protocol (MCP) Server and Client Tools with FastMCP and Integrating Them into Google Gemini 2.0’s Function‑Calling Workflow
In this Colab‑ready tutorial, we demonstrate how to integrate Google’s Gemini 2.0 generative AI with an in‑process Model Context Protocol (MCP) server, using FastMCP. Starting with an interactive getpass prompt to capture your GEMINI_API_KEY securely, we install and configure all necessary dependencies: the google‑genai Python client for calling the Gemini API, fastmcp for defining and…