
Context

LLMs Can Now Reason in Parallel: UC Berkeley and UCSF Researchers Introduce Adaptive Parallel Reasoning to Scale Inference Efficiently Without Exceeding Context Windows
Large language models (LLMs) have made significant strides in reasoning capabilities, exemplified by breakthrough systems like OpenAI o1 and DeepSeekR1, which utilize test-time compute for search and reinforcement learning to optimize performance. Despite this progress, current methodologies face critical challenges that impede their effectiveness. Serialized chain-of-thought approaches generate excessively long output sequences, increasing latency and…

A Step-by-Step Coding Guide to Defining Custom Model Context Protocol (MCP) Server and Client Tools with FastMCP and Integrating Them into Google Gemini 2.0’s Function‑Calling Workflow
In this Colab‑ready tutorial, we demonstrate how to integrate Google’s Gemini 2.0 generative AI with an in‑process Model Context Protocol (MCP) server, using FastMCP. Starting with an interactive getpass prompt to capture your GEMINI_API_KEY securely, we install and configure all necessary dependencies: the google‑genai Python client for calling the Gemini API, fastmcp for defining and…